视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
关于python读取DICOM图像的代码实例分享
2020-11-27 14:23:27 责编:小采
文档

DICOM(Digital Imaging and Communications in Medicine)即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052)。下面这篇文章主要给大家介绍了关于python对DICOM图像读取的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。

DICOM介绍

DICOM3.0图像,由医学影像设备产生标准医学影像图像,DICOM被广泛应用于放射医疗,心血管成像以及放射诊疗诊断设备(X射线,CT,核磁共振,超声等),并且在眼科和牙科等其它医学领域得到越来越深入广泛的应用。在数以万计的在用医学成像设备中,DICOM是部署最为广泛的医疗信息标准之一。当前大约有百亿级符合DICOM标准的医学图像用于临床使用。

看似神秘的图像文件,究竟是如何读取呢?网上随便 一搜,都有很多方法,但缺乏比较系统的使用方法,下文综合百度资料,结合python2.7,讲解如何读取及使用DICOM图像。

读取DICOM图像,需要以下几个库:pydicom、CV2、numpy、matplotlib。pydicom专门处理dicom图像的python专用包,numpy高效处理科学计算的包,依据数据绘图的库。

安装:

pip install matplotlib
pip install opencv-python #opencv的安装,小度上基本都是要下载包,安装包后把包复制到某个文件夹下,
#后来我在https://pypi.python.org/pypi/opencv-python找到这种pip的安装方法,亲测可用
pip install pydicom
pip install numpy

如果没有记错,安装pydicom时,也会自动把numpy安装上。

安装好这些库后,就可以对dicom文件操作。

具体看下面代码:

#-*-coding:utf-8-*-
import cv2
import numpy
import dicom
from matplotlib import pyplot as plt

dcm = dicom.read_file("AT0001_100225002.DCM")
dcm.image = dcm.pixel_array * dcm.RescaleSlope + dcm.RescaleIntercept

slices = []
slices.append(dcm)
img = slices[ int(len(slices)/2) ].image.copy()
ret,img = cv2.threshold(img, 90,3071, cv2.THRESH_BINARY)
img = numpy.uint8(img)

im2, contours, _ = cv2.findContours(img,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
mask = numpy.zeros(img.shape, numpy.uint8)
for contour in contours:
 cv2.fillPoly(mask, [contour], 255)
img[(mask > 0)] = 255


kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(2,2))
img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)


img2 = slices[ int(len(slices)/2) ].image.copy()
img2[(img == 0)] = -2000


plt.figure(figsize=(12, 12))
plt.subplot(131)
plt.imshow(slices[int(len(slices) / 2)].image, 'gray')
plt.title('Original')
plt.subplot(132)
plt.imshow(img, 'gray')
plt.title('Mask')
plt.subplot(133)
plt.imshow(img2, 'gray')
plt.title('Result')
plt.show()

在DICOM图像里,包含了患者的相关信息的字典,我们可以通过dir查看DICOM文件有什么信息,可以通过字典返回相关的值。

import dicom
import json
def loadFileInformation(filename):
 information = {}
 ds = dicom.read_file(filename)
 information['PatientID'] = ds.PatientID
 information['PatientName'] = ds.PatientName
 information['PatientBirthDate'] = ds.PatientBirthDate
 information['PatientSex'] = ds.PatientSex
 information['StudyID'] = ds.StudyID
 information['StudyDate'] = ds.StudyDate
 information['StudyTime'] = ds.StudyTime
 information['InstitutionName'] = ds.InstitutionName
 information['Manufacturer'] = ds.Manufacturer
 print dir(ds)
 print type(information)
 return information

a=loadFileInformation('AT0001_100225002.DCM')
print a

总结

下载本文
显示全文
专题