视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
CodeforcesRound#273(Div.2)BRandomTeams_html/css
2020-11-27 15:56:32 责编:小采
文档

题目链接:Random Teams


B. Random Teams

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

n participants of the competition were split into m teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.

Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.

Input

The only line of input contains two integers n and m, separated by a single space (1?≤?m?≤?n?≤?109) ? the number of participants and the number of teams respectively.

Output

The only line of the output should contain two integers kmin and kmax ? the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.

Sample test(s)

input

5 1

output

10 10

input

3 2

output

1 1

input

6 3

output

3 6

Note

In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.

In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.

In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.





解题思路:n个人,m个队,只有在一个队的人可以两两成为朋友,问能比完赛后,朋友的对数的最大值和最小值为多少。

很显然,最大值的分法是有n-1个队中只放一个人, 把剩下的人全放到剩下的那个队。最少的分法是尽可能的均分n个人到m个队。具体的朋友对数是简单的组合,k个人两两之间的朋友对数为 C(k,2) = k*(k-1)/2 .




AC代码:

#include #include #include #include #include #include #include #include #include #include #include #include using namespace std;#define INF 0x7ffffffflong long n, m, minn, maxn;long long c(long long x){ return (x*(x-1))/2;}int main(){ #ifdef sxk freopen("in.txt","r",stdin); #endif while(scanf("%lld%lld",&n, &m)!=EOF) { long x = n/m; long y = n%m; if(m == 1) minn = c(n); else minn = y*c(x+1) + (m-y)*c(x); maxn = c(n-m+1); printf("%lld %lld\n", minn, maxn); } return 0;}

下载本文
显示全文
专题