视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001 知道1 知道21 知道41 知道61 知道81 知道101 知道121 知道141 知道161 知道181 知道201 知道221 知道241 知道261 知道281
问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
Javascript图像处理—图像形态学(膨胀与腐蚀)_javascript技巧
2020-11-27 21:06:31 责编:小采
文档

前言

上一篇文章,我们讲解了图像处理中的阈值函数,这一篇文章我们来做膨胀和腐蚀函数。

膨胀与腐蚀

说概念可能很难解释,我们来看图,首先是原图:

Original image

膨胀以后会变成这样:

Dilation result - Theory example

腐蚀以后则会变成这样:

Erosion result - Theory example

看起来可能有些莫名其妙,明明是膨胀,为什么字反而变细了,而明明是腐蚀,为什么字反而变粗了。

实际上,所谓膨胀应该指:

较亮色块膨胀。

而所谓腐蚀应该指:

较亮色块腐蚀。

上面图里面,由于背景白色是较亮色块,所以膨胀时就把黑色较暗色块的字压扁了……相反腐蚀时,字就吸水膨胀了……

用数学公式表示就是:

说白了就是在指定大小的内核里找最暗或者最亮的像素点,并用该点替换掉内核锚点上的像素。

实现

首先我们来实现膨胀dilate函数。
代码如下:
var dilate = function(__src, __size, __borderType, __dst){
__src || error(arguments.callee, IS_UNDEFINED_OR_NULL/* {line} */);
if(__src.type && __src.type == "CV_RGBA"){
var width = __src.col,
height = __src.row,
size = __size || 3,
dst = __dst || new Mat(height, width, CV_RGBA),
dstData = dst.data;

var start = size >> 1;
var withBorderMat = copyMakeBorder(__src, start, start, 0, 0, __borderType),
mData = withBorderMat.data,
mWidth = withBorderMat.col;

var newOffset, total, nowX, offsetY, offsetI, nowOffset, i, j;

if(size & 1 === 0){
error(arguments.callee, UNSPPORT_SIZE/* {line} */);
return __src;
}

for(i = height; i--;){
offsetI = i * width;
for(j = width; j--;){
newOffset = 0;
total = 0;
for(y = size; y--;){
offsetY = (y + i) * mWidth * 4;
for(x = size; x--;){
nowX = (x + j) * 4;
nowOffset = offsetY + nowX;
(mData[nowOffset] + mData[nowOffset + 1] + mData[nowOffset + 2] > total) && (total = mData[nowOffset] + mData[nowOffset + 1] + mData[nowOffset + 2]) && (newOffset = nowOffset);
}
}
dstData[(j + offsetI) * 4] = mData[newOffset];
dstData[(j + offsetI) * 4 + 1] = mData[newOffset + 1];
dstData[(j + offsetI) * 4 + 2] = mData[newOffset + 2];
dstData[(j + offsetI) * 4 + 3] = mData[newOffset + 3];
}
}

}else{
error(arguments.callee, UNSPPORT_DATA_TYPE/* {line} */);
}
return dst;
};

这行代码里面,我们先用RGB的数值和与上一个最大值total对比,然后如果新的值比较大,就把新的值赋给total,并把新的偏移量newOffset赋值当前偏移量nowOffset。

然后整个内核大小的面积循环完了就可以找到一个最大的total以及对应的偏移量newOffset。就可以赋值了:

dstData[(j + offsetI) * 4] = mData[newOffset];
dstData[(j + offsetI) * 4 + 1] = mData[newOffset + 1];
dstData[(j + offsetI) * 4 + 2] = mData[newOffset + 2];
dstData[(j + offsetI) * 4 + 3] = mData[newOffset + 3];

那么腐蚀erode函数则相反,找一个最小的值就行了。
代码如下:
var erode = function(__src, __size, __borderType, __dst){
__src || error(arguments.callee, IS_UNDEFINED_OR_NULL/* {line} */);
if(__src.type && __src.type == "CV_RGBA"){
var width = __src.col,
height = __src.row,
size = __size || 3,
dst = __dst || new Mat(height, width, CV_RGBA),
dstData = dst.data;

var start = size >> 1;
var withBorderMat = copyMakeBorder(__src, start, start, 0, 0, __borderType),
mData = withBorderMat.data,
mWidth = withBorderMat.col;

var newOffset, total, nowX, offsetY, offsetI, nowOffset, i, j;

if(size & 1 === 0){
error(arguments.callee, UNSPPORT_SIZE/* {line} */);
return __src;
}

for(i = height; i--;){
offsetI = i * width;
for(j = width; j--;){
newOffset = 0;
total = 765;
for(y = size; y--;){
offsetY = (y + i) * mWidth * 4;
for(x = size; x--;){
nowX = (x + j) * 4;
nowOffset = offsetY + nowX;
(mData[nowOffset] + mData[nowOffset + 1] + mData[nowOffset + 2] < total) && (total = mData[nowOffset] + mData[nowOffset + 1] + mData[nowOffset + 2]) && (newOffset = nowOffset);
}
}
dstData[(j + offsetI) * 4] = mData[newOffset];
dstData[(j + offsetI) * 4 + 1] = mData[newOffset + 1];
dstData[(j + offsetI) * 4 + 2] = mData[newOffset + 2];
dstData[(j + offsetI) * 4 + 3] = mData[newOffset + 3];
}
}

}else{
error(arguments.callee, UNSPPORT_DATA_TYPE/* {line} */);
}
return dst;
};

效果

下载本文
显示全文
专题